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Abstract

A curvilinear version of the nearshore circulation model SHORECIRC is developed based on the quasi-3D nearshore

circulation equations derived by Putrevu and Svendsen [Eur. J. Mech. 18 (1999) 409–427]. We use a generalized coordinate

transformation and re-derive the equations in tensor-invariant forms. The contravariant component technique is used to simplify

both the transformed equations and boundary conditions. A high-order finite-difference scheme with a staggered grid in the

image domain is adopted for the numerical model. Very good convergence rates with both grid refinement and time refinement

are obtained in a simple convergence test. The model is then applied to four cases involving either a non-orthogonal quadrilateral

grid or a generalized curvilinear grid. The versatility of the curvilinear model in dealing with curved shorelines, nearshore

breakwaters and other complicated geometries is demonstrated in the test cases. The accuracy of the model is shown in the paper

through model/data comparisons in two of the case studies.
D 2003 Elsevier B.V. All rights reserved.
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1. Introduction understanding, a variety of numerical models have
The performance of a numerical model for wave-

induced nearshore circulation is important for predict-

ing sediment and pollutant transport in coastal regions.

The model performance mainly depends on the under-

standing of nearshore phenomena as well as numerical

techniques used in the model. Over the last decades,

significant progress has been made in our understand-

ing of wave-generated phenomena such as wave set-up,

wave breaking, undertow, cross-shore and longshore

currents and their stability, turbulence and mixing, and

the generation of long-wave phenomena. Based on this
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been developed and used for modeling of nearshore

phenomena.

Recently, the three-dimensional dispersion of mo-

mentum in wave-induced nearshore currents was dis-

cussed by Svendsen and Putrevu (1994). They found

that the vertical nonuniformity of the currents leads to

a mixing-like term in the depth-integrated alongshore

momentum equation, which is analogous to the shear-

dispersion mechanism found by Taylor (1953, 1954).

The lateral mixing caused by the shear-dispersion

mechanism is an order of magnitude larger than the

turbulent lateral mixing and is thus considered to be a

major contributor to the total lateral mixing in the

nearshore region. Smith (1997) also presented a rather

general derivation of the shear dispersion mechanism
d.
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for the case with no short-wave-induced volume flux.

Putrevu and Svendsen (1999, PS99 hereafter) extend-

ed the results of Svendsen and Putrevu (1994) to the

general case of unsteady circulations induced by wave

breaking over an arbitrary bottom topography. For a

zero wave-induced volume flux, the newly derived

equations are similar to those of Smith. A quasi-3D

numerical model named SHORECIRC (Svendsen et

al., 2000) has been developed based on the nearshore

circulation equations. It is a 2D horizontal model

which incorporates the effect of the vertical structure

of horizontal flows. A semi-analytical solution is used

for the 3D current profiles in combination with a

numerical solution for the depth-integrated 2D hori-

zontal equations. Several applications of the model

have been carried out in studies of various nearshore

phenomena, such as surf-beat (Van Dongeren et al.,

1995), longshore currents (Sancho et al., 1995), infra-

gravity waves (Van Dongeren et al., 1996, 1998; Van

Dongeren and Svendsen, 2000), shear waves (Sancho

and Svendsen, 1998) and rip currents (Haas et al.,

1998; Svendsen and Haas, 1999) and the model has

been compared to data from the DELILAH field

experiment (Svendsen et al., 1997).

The SHORECIRC model was developed in rectan-

gular Cartesian coordinates and was only used in

rectangular domains, thus limiting the applicability

of the model to less complicated coastal environments.

First, a rectangular grid is not able to fit complicated

shoreline boundaries very well. Second, complicated

geometries, such as harbors and tidal inlets, make the

uniform-resolution model very expensive when a fine

grid is used. Therefore, the development of a curvilin-

ear version of SHORECIRC is necessary for its use in

irregular shaped domains.

There are numerous examples of curvilinear grid

methods in the study of waves and currents. Usually

structured grid methods with finite-difference discre-

tizations, or unstructured grid methods with a finite-

element or finite-volume approach are used in model

developments. Unstructured grids are more flexible

than structured grids to fit complicated boundaries and

are able to deal with very complex geometries. How-

ever, the finite-difference methods with structured

curvilinear grids are much simpler to program than

finite-element or finite-volume methods and thus are

widely used in fluid dynamic fields. For example,

Blumberg and Mellor (1987) developed a 3D coastal
ocean circulation model (POM) in orthogonal curvi-

linear coordinates. Non-orthogonal boundary-fitted

grid models with generalized coordinate transforma-

tion were developed by many authors (e.g., Sheng,

1986; Shi and Sun, 1995; Shi et al., 1997) for model-

ing coastal and estuarine processes.

For a generalized coordinate transformation, sever-

al advantages of using the contravariant technique

have been recognized in the derivations of hyperbol-

ic-type equations, as shown by Sheng (1986) and Shi

and Sun (1995), among others. In generalized curvi-

linear coordinates, contravariant and covariant compo-

nents are two kinds of vector components based on,

respectively, a basis which is locally tangent to the

curvilinear coordinate and a reciprocal basis which is

locally normal to the curvilinear coordinate. The

designation ‘‘contravariant’’ or ‘‘covariant’’ technique

represents the choice of components which are adop-

ted as primitive variables in the equations transformed

from rectangular Cartesian coordinates. It has been

found that both the contravariant technique and the

covariant technique are able to simplify the trans-

formed equations (see, for example, Warsi, 1998), in

comparison to the Cartesian component method (see,

for example, Häuser et al., 1985, 1986; Raghunath et

al., 1987; Borthwick and Barber, 1992). The contra-

variant technique can simplify slip lateral boundary

conditions compared to the covariant technique and is

thus more conveniently used in hydrodynamic models

with slip boundary conditions.

In the present paper, a curvilinear nearshore circu-

lation model is developed based on the quasi-3D

circulation equations. A generalized coordinate trans-

formation and the contravariant technique are used in

the model. Following the Cartesian version of the

circulation model SHORECIRC (Svendsen et al.,

2000), a fourth-order Adams–Bashforth–Moulton

predictor–corrector scheme is employed in the curvi-

linear model to perform the time integration. Unlike the

spatial discretization in the Cartesian version, we use a

staggered grid system in the transformed image do-

main. A fourth-order scheme using standard five-point

finite differencing is used in the first-order derivative

terms, while a second-order scheme is used for the

higher order derivatives and coordinate metrics for

spatial discretizations. Various point types are defined

in the model code to recognize different boundary

conditions, which allows the model to be used in
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complicated domains such as harbors and tidal inlets.

We also test the numerical convergence, which is

important for a curvilinear model. The model is finally

applied to four cases involving either a nonorthogonal

Cartesian grid or generalized curvilinear grid. The first

case is the simulation of Gourlay’s (1974) laboratory

experiment in which currents were generated on a

curved beach by diffracted waves in the lee of a

breakwater. We generated a curvilinear grid to fit the

curved beach. The breakwater is modeled with the

recognition of point types. The second case is the

simulation of longshore circulation around a conical

island. A circular domain with curvilinear grid is

employed for this case. The third case is the longshore

current simulations for the longshore current experi-

ment conducted at US Army Engineer Research and

Development Center (Hamilton and Ebersole, 2001). A

non-rectangular grid is employed to fit the oblique

waveguides used in the physical experiment. The last

case is a simulation of nearshore circulation at Grays

Harbor, Washington. A curvilinear grid is generated to

deal with the complicated geometry of jetties and an

inlet.

This paper is organized as follows. First, we re-

derive the circulation equations (PS99) in generalized

curvilinear coordinates. Next, model implementations

including numerical schemes, vertical profile calcula-

tions, as well as boundary conditions are described.

Then, the numerical test on convergence and four

model applications are carried out. The conclusions

are drawn in the final section.
2. Derivations of equations in curvilinear

coordinates

2.1. Coordinate transformation

A coordinate transformation is introduced in the

general form

n1 ¼ n1ðx1; x2Þ

n2 ¼ n2ðx1; x2Þ

z ¼ z

8>>>><
>>>>:

ð1Þ

where (x1, x2, z) are spatial independent variables in

rectangular Cartesian coordinates and (n1, n2, z) are
new independent variables in the transformed image

domain. z represents the vertical coordinate. Any

vector v can be written in Cartesian coordinates as

v ¼ v1iþ v2jþ v3k ð2Þ

where (i, j, k) are Cartesian basis vectors. In the

generalized curvilinear coordinates, the coordinate

basis is the combination of the generalized horizontal

basis (a1, a2) and the vertical Cartesian base vector k

and is written as (a1, a2, k). Using the new basis (a1,

a2, k), the vector v can be described as

v ¼ vaaa þ v3k ða ¼ 1; 2Þ ð3Þ

where va are contravariant horizontal components of

the vector; v3 is the vertical Cartesian component of the

vector.

The relationship between horizontal components in

the Cartesian and contravariant components in the

curvilinear coordinates may be written as

va ¼ Bna

Bxb
vb ða; b ¼ 1; 2Þ ð4Þ

where vb represents the Cartesian components.Follow-

ing the velocity splitting method in PS99, the contra-

variant components of instantaneous horizontal

velocity can be written as

ua ¼ uVa þ ua
w þ Ṽ a þ V a

1 ð5Þ

where uVa, uw
a , Ṽ a, and V1

a are, respectively, the turbu-

lence component, the wave component, the component

of depth-averaged and short-wave-averaged velocity,

and the vertical variation of the short-wave-averaged

velocity.

2.2. Depth-integrated, short-wave-averaged equations

The model equations in PS99 were derived in

rectangular Cartesian coordinates and described in

terms of Cartesian tensor representations. It may not

be appropriate if we only transform the final Eqs. (4)

and (45) in PS99 from Cartesian coordinates into

curvilinear coordinates since use of the direct trans-

formation does not allow a simplification of the

equations using the contravariant technique. In addi-

tion, we can not guarantee that the curvilinear counter-
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parts of the 3D coefficientsM, A, D and B in PS99) are

in correct form after the generalized coordinate trans-

formation. Therefore, we re-derive the equations in

generalized coordinates, starting with the depth-inte-

grated, short-wave-averaged equations as shown in

Eqs. (4) and (5) in PS99.

The depth-integrated, short-wave-averaged conti-

nuity equation (PS99, Eq. (4)) in terms of contravariant

components is given by

Bf̄
Bt

þ 1ffiffiffiffiffi
g0

p
B

Bna
ð ffiffiffiffiffi

g0
p

Ṽ ahÞ ¼ 0 ð6Þ

where g0 is the determinant of the metric tensor gab,

g0 ¼
g11 g12

g21 g22

������
������ ð7Þ

in which

gab ¼ Bxc

Bna

Bxc

Bnb
ð8Þ

To get Eq. (6), we start with the general form of the

continuity equation and then write it in a tensor-

invariant form that can be simplified to the contra-

variant component equation. The detailed derivation

of Eq. (6) can be found in Appendix A.

Similarly, the depth-integrated, short-wave-aver-

aged momentum equation can be written in terms of

contravariant components as

B

Bt
ðṼ ahÞ þ

"
Ṽ aṼ bhþ

Z f̄

�h0

V a
1V

b
1 dzþ Qa

wV
b
1 ðf̄Þ

þ V a
1 ðf̄ÞQb

w

#
;b

þ 1

q
T

ab
;b þ 1

q
S

ab
;b þ gh

Bf
Bnb

gba

� 1

q
sa
s þ

1

q
H a
B ¼ 0 ð9Þ

where Qw
a represents the contravariant components of

short-wave-induced volume flux as defined in PS99.

gba are the contravariant metric defined as

gba ¼ Bna

Bxc

Bnb

Bxc
: ð10Þ
H s
a and HB

a are the contravariant components of the

surface shear stress and the bottom shear stress,

respectively. Sab and Tab are the contravariant compo-

nents of the short-wave-induced radiation stress tensor

and the depth-integrated Reynolds’ stress tensor, re-

spectively. (),b
ab presents the covariant derivative of a

second-order tensor, given by

T
ab
;b ¼ 1ffiffiffiffiffi

g0
p

B
ffiffiffiffiffi
g0

p
T ab

Bnb
þ T cbCa

cb ð11Þ

where Ccb
a is Christoffel symbol of the second kind.

The detailed derivation of Eq. (9) and calculations of

T,b
ab and S,b

ab can be found in Appendix A.

In (9), mf
�h0

V a
1V

b
1 dzþ Qa

wV
b
1 ðfÞ þ V a

1 ðfÞQb
w repre-

sents the effects of the vertical nonuniformity of the

short-wave-averaged velocities and give rise to the

dispersive mixing as described in PS99. These terms

are evaluated using the solution for V1
a.

2.3. Solution for V1
a

To get the solution for V1
a, we start with the

horizontal momentum equation as in PS99. The fol-

lowing tensor-invariant form of the equation is ob-

tained from the general form of the Eq. (55) shown in

Appendix A.

Bua

Bt
þ ðuaubÞ;b þ

B

Bz
ðuawÞ ¼ � 1

q
Bp

Bnb
gba ð12Þ

where p is the instantaneous pressure; w is the vertical

component of the instantaneous velocity. Introducing

Eq. (5) into Eq. (12) and averaging over a wave period

leads to

BV a
1

Bt
þ BṼ a

Bt
þ


V a
1V

b
1 þ Ṽ aṼ b þ V a

1 Ṽ
b þ V

b
1 Ṽ

a

þ ua
wu

b
w þ uVauVb

�
;b
þ B

Bz



V a
1W þ Ṽ aW

þ ua
www þ uVawV

�
¼ � 1

q
Bp̄

Bnb
gba ð13Þ

where W represents the vertical component of the time

averaging velocity. Assuming hydrostatic pressure and
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the eddy viscosity closure (see Appendix A), we get

the tensor-invariant form of PS99 (Eq. (16))

BV a
1

Bt
� B

Bz
vt
BV a

1

Bz

� 

¼�
 

BṼ a

Bt
þ Ṽ bṼ a

;b þ ggba Bf̄
Bnb

þ f a

!

� Ṽ bV a
1;b þ V

b
1 Ṽ

a
;b þ V

b
1 V

a
1;b þW

BV a
1

Bz

� 

þ ½vtðgcbV a
;c þ gcaV b

;cÞ�;b þ
B

Bz
vtg

ba BW

Bnb

� 
ð14Þ

where

f a ¼


ua
wu

b
w

�
;b
þ Bðwwua

wÞ
Bz

� gba Bwwww

Bnb
ð15Þ

and ()b
a represents the covariant derivative of a first-

order tensor defined by Eq. (43).Using the continuity

equation (Eq. (6)), the depth-integrated momentum

Eq. (9) may be written as

BṼ a

Bt
þ Ṽ bṼ a

;b þ ggba Bf̄
Bnb

¼ � 1

qh
S

ab
;b � 1

qh
HBa �

1

qh
T

ab
;b � 1

h

	
Z f̄

�h

V a
1V

b
1 dzþ Qa

wV
b
1 ðf̄Þ þ V a

1 ðf̄ÞQb
w

 !
;b

ð16Þ

Eq. (16) can be used to rewrite Eq. (14) as

BV a
1

Bt
� B

Bz
ðvt

BV a
1

Bz
Þ

¼ 1

qh
S

ab
;b � f a þ H a

B

qh

� 

�
�
Ṽ bV a

1;b þ V
b
1 Ṽ

a
;b þ V

b
1 V

a
1;b þW

BV a
1

Bz



� 1

h

 Z f̄

�h

V a
1V

b
1 dzþ Qa

wV
b
1 ðf̄Þ þ V a

1 ðf̄ÞQb
w

!
;b

þ
(
½vtðgcbV a

;c þ gcaV b
;cÞ�;b

þ B

Bz
vtg

ba BW

Bnb

� 
þ 1

qh
T

ab
;b

)
ð17Þ
By comparing Eq. (17) against PS99, Eq. (19), the

major changes of the equation after the transformation

can be found that the regular horizontal derivatives in

the Cartesian equation become the covariant deriva-

tives in the generalized curvilinear equation. The

vertical derivative terms in the generalized equation

appear to be in the same form as that in the Cartesian

equation since there is no transformation in the vertical

direction. Therefore, the solution for V1
a should be in

the same form as in Cartesian coordinates as described

below.

After the non-dimensional analysis and perturba-

tion as in PS99, we use a perturbation expansion of

the type

V a
1 ¼ V

að0Þ
1 þ yV að1Þ

1 þ . . . ð18Þ

where y (f 0.1) represents the size of the short-wave-

induced quantities; V1
a(0) and V1

a(1) represent zero-

and first-order of the contravariant components. We

only consider the first two terms on the right hand side

of (18) in the present paper. The governing equation

for V1
a(0) is

BV
að0Þ
1

Bt
� B

Bz
vt
BV

að0Þ
1

Bz

 !
¼ Fa ð19Þ

where

Fa ¼ 1

qh
S

ab
;b � f a þ H a

B

qh
ð20Þ

The solution for V1
a(0) will be the same as the

solution in Cartesian coordinates (PS99, Eqs. (34) and

(37)) except the solution value represents the contra-

variant component of the vector.

Similarly, the solution for V1
a(0) can be written in

the same form as in PS99, Eq. (42) except that

Rð1Þ
a ðz; tÞ ¼ �

 
Ṽ bV

að0Þ
1;b þ V

bð0Þ
1 Ṽ a

;b þ V
bð0Þ
1 V

að0Þ
1;b

þW
BV

að0Þ
1

Bz

!
þ 1

h

 Z f̄

�h

V
að0Þ
1 V

bð0Þ
1 dz

þ Qa
wV

bð0Þ
1 ðf̄Þ þ V

að0Þ
1 ðf̄ÞQb

w

!
;b

ð21Þ
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2.4. Results for the integrals

The derivation for the integrals required in Eq. (9) is

very similar to that in PS99, noticing that all the

horizontal derivatives in PS99 should be replaced by

the corresponding covariant derivatives in generalized

coordinates.

In PS99, Eq. (94) was used to replace W in PS99,

Eq. (93). The representation of W in general coordi-

nates may be written as

W ¼ �
"
ðṼ b þ V

bð0Þ
1 ð�h0ÞÞ

Bh0

Bxb

þ ðh0 þ zÞṼ b
;b þ

Z z

�h0

V
bð0Þ
1;b dz

#
: ð22Þ

In the derivation of Eq. (22), we use the following

relations:

W ¼ �
Z z

�h0

V bdz

� 
;b

¼
B

Z z

�h0

V bdz

Bnb
þ
Z z

�h0

V adzCb
ba

¼
Z z

�h0

BV b

Bnb
dzþ V bð�h0Þ

Bh0

Bnb
þ
Z z

�h0

V aCb
badz

¼
Z z

�h0

V
b
;bdzþ V bð�h0Þ

Bh0

Bnb
ð23Þ

Following the steps in PS99 leads to the results for

the integrals in Eq. (16) in general coordinates:

Z f̄

�h0

V a
1V

b
1 dzþ Qa

wV
b
1 ðf̄Þ þ V a

1 ðf̄ÞQb
w

¼ Mab þ AabdṼ
d � hðDdbṼ

a
;d þ DdaṼ

b
;d þ BabṼ

d
;dÞ

ð24Þ
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The final tensor form of the momentum Eq. (16)

(similar to PS99, Eq. (45)) can be written as

B

Bt
ðṼ ahÞ þ ðṼ aṼ bhþ AabdṼ

dÞ;b þ
1

q
ðSab þ qMabÞ;b

þ ghgba Bf̄
Bnb

þ H a
B

q
þ ½Tab � hðDdbṼ

a
;d þ DdaṼ

b
;dÞ�;b

� ðhBabṼ
d
;dÞ;b ¼ 0 ð25Þ

where the tensors A, B, D and M have the same

definitions as in PS99 except all the horizontal deriv-

atives of V1
(0) should be replaced by the corresponding

covariant derivatives.

Expanding the covariant derivatives in Eq. (25),

the momentum equations in generalized curvilinear

coordinates can also be written as

B

Bt
ðṼ ahÞ þ 1ffiffiffiffiffi

g0
p

B

Bnb
½ ffiffiffiffiffig0p ðṼ aṼ bhþ AabdṼ

dÞ�

þ ðṼ cṼ bhþ AcbdṼ
dÞCa

cb þ
1

q
ffiffiffiffiffi
g0

p
B

Bnb

	 ½ ffiffiffiffiffig0p ðSab þ qMabÞ� þ
1

q
ðScb þ qMcbÞCa

cb

þ ghgba Bf̄
Bnb

þ HBa

q
þ 1ffiffiffiffiffi

g0
p

B

Bnb
f ffiffiffiffiffi

g0
p ½T ab

� hðDdbṼ
a
;d þ DdaṼ

b
;dÞ�g þ ½T cb � hðDdbṼ

c
;d

þ DdcṼ
b
;dÞ�C

a
cb �

1ffiffiffiffiffi
g0

p
B

Bnb
½ ffiffiffiffiffig0p ðhBabṼ

d
;dÞ�

� ðhBcbṼ
d
;dÞCa

cb ¼ 0 ð26Þ

Eqs. (6) and (26) are the nearshore circulation

equations in generalized curvilinear coordinates.
3. Model implementation

3.1. Numerical scheme

Following the Cartesian version of the SHORE-

CIRC model, the governing equations (Eqs. (6) and

(26)) are solved using the fourth-order Adams–Bash-

forth–Moulton predictor–corrector scheme to per-
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form the time integration. A fourth-order scheme

using standard five-point finite differencing is used

for the first-order spatial derivative terms and a

second-order central scheme is used for higher order

derivatives, metric tensors and Christoffel symbols. In

contrast to the non-staggered grid used in the Carte-

sian version, we employ a staggered grid in the (n1,
n2) plane with which the numerical noise level was

found to become lower than that with a non-staggered

grid. The staggered grid arrangement and the detailed

numerical schemes can be found in Appendix C. In

addition, various point types are defined on the

staggered grid to recognize different boundary con-

ditions and to deal with complicated structures in a

computational domain. No numerical filtering is need-

ed in the code.

3.2. Calculation of vertical current profiles

As described in Eq. (18), the depth-varying current

velocity is split into two parts. The first part V1
a(0) is

primarily the component generated by the local

external forcing Fa in Eq. (20) while the second part

V1
a(1) is generated by the advective terms shown in

Eq. (17). After a scale analysis in PS99, a reasonable

assumption is made that the first component is much

larger than the second one. In addition, the expres-

sions of coefficients A, B, D and M in PS99 also show

that the contributions to these coefficients from V1
a(1)

can be expressed in terms of the V1
a(0) component in

the values of the current–current and current–wave

interaction terms. Therefore, we only use V1
a(0) to

present the vertical variation of V1
a. V1

a(0) is given by

V
að0Þ
1 ¼ d1an

2 þ e1an þ f1a þ f2a ð27Þ

where

n ¼ zþ h ð28Þ

in which h is the water depth from the mean water

level to the bottom. In Eq. (27)

d1a ¼
1

2vt

1

qh
ððj � SÞa þ H a

B � H ssÞ � f�

#"
ð29Þ

where (j�S)a is contravariant component of j�S; Hssa
represents the shear stress associated with the steady

a

streaming and fa represents the short-wave forcing

(see Putrevu and Svendsen, 1995 for detail).

e1a ¼
H a
B � H a

ss

vt
ð30Þ

f1a þ f2a ¼ � Qa
w

h
� hðH a

B � H a
ssÞ

2qvt
� 1

3
d1ah

2 ð31Þ

Substituting Eq. (27) into the integration forms of the

coefficients A, B, D and M in PS99, we can get the

final expressions of the dispersive mixing coefficients

as shown in Appendix B.

3.3. Boundary conditions

There are several types of boundary conditions

implemented in the curvilinear model. First, slip

boundary conditions can be used for lateral walls,

shorelines and boundaries of structures inside a com-

putational domain. As mentioned in the introduction of

the paper, the contravariant technique can simplify the

expressions of slip boundary conditions in curvilinear

coordinates. For a curvilinear boundary, the slip

boundary condition can be simply expressed as

Ṽ a ¼ 0: ð32Þ
Second, a specified-flux boundary condition is

implemented by using the contravariant component.

The contravariant component of the specified velocity

(or flux) can be obtained using the transformation

relation (Eq. (4)).

Third, a periodic boundary condition along cross-

shore boundaries at the two ends of the domain is also

an option in this model for simulations of uniform

beaches. The implementation of the periodic bound-

ary condition is similar to that in the Cartesian version

of the SHORECIRC model except that all vector

variables are taken in contravariant forms. The peri-

odic boundary condition requires both the bathymetry

and grid to be periodic.
4. Numerical test and application

4.1. Convergence test

Convergence is a very important numerical proper-

ty for a curvilinear model since variable grid spacing is
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generally used in a grid system. As a simple test case

(Shi et al., 2001), the evolution of waves in a rectan-

gular basin is calculated to test the convergence with

both space and time discretization.

The basin dimensions are 20	 20 m, and the water

depth is 0.5 m constant over the basin. The initial

condition is provided by a motionless Gaussian hump

of water with its center located at the center of the

basin (xc, yc):

fðx; y; t¼0Þ¼H0expf�c½ðx� xcÞ2 þ ðy� ycÞ2�=L2g;

ð33Þ

uðx; y; t ¼ 0Þ ¼ 0; ð34Þ

vðx; y; t ¼ 0Þ ¼ 0; ð35Þ

where H0 is the initial height of the hump; L is a scale

length; c is the shape coefficient, and (xc, yc) is the

coordinate at the center of the domain. We chose

H0 = 0.2 m, L= 1 m, c = 0.4, and xc = yc = 10 m.

To test the grid convergence, we keep the time

step as a constant, i.e., Dt = 0.01 s, and adopt a

sequence of different grid spacing Dx	 p, where

Dx = 0.05 m and p = 1,2,. . .,8 (The Courant Numbers

are less than 0.5 in all the cases). Fig. 1 shows the

convergence rate with grid refinement that is demon-

strated by the RMS differences of simulated surface
Fig. 1. Convergence rates with grid refinement.
elevations at t= 10 s. The RMS difference of surface

elevation is defined by

RMSp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
i¼1

Xn
j¼1

ðfpði; jÞ � fpþ1ði; jÞÞ2

m	 n

vuuut
ð36Þ

where fp represents the calculated surface elevations

in the case p. (m, n) are the grid dimensions in the

case of p = 8. Fig. 1 shows that the logarithmic RMS

differences decrease linearly when grid spacing de-

crease. Then, the Cauchy convergence rate defined

by the following formula can be calculated.

R ¼ logðRMSp=RMSpþ1Þ
logðDxp=Dxpþ1Þ

ð37Þ

The averaged R calculated in this case is 3.58 which

is very reasonable since both fourth-order and sec-

ond-order schemes are utilized in the model.

Similarly, the convergence with time discretization

is examined by using a sequence of time steps from

0.004 to 0.02 s and keeping a constant grid spacing

Dx = 0.2 m. The convergence rate with time step

refinement is shown in Fig. 2. The averaged conver-

gence rate is 2.32 which is a little lower than the grid

spacing convergence rate. It is found that the time

refinement convergence rate can be improved to

about 3.0 by using an under-relaxed iteration tech-

nique (Wei and Kirby, 1995) during the corrector

stage in the code. We do not use the iteration

technique for computational economy and assume

the convergence rate without iteration to be sufficient

for the model.

4.2. Simulation of laboratory experiment of Gourlay

Gourlay (1974) carried out a laboratory experi-

ment in which currents were generated on a curved

beach by diffracted waves in the lee of a breakwater.

The purpose of the experiment was to demonstrate

that longshore variation of the wave height could

generate longshore currents. Fig. 3 shows the labo-

ratory setup for Gourlay’s experiment. A 1 on 10

concrete beach is parallel to the incoming wave crests

in the exposed zone. In the shadow zone, the slope is

also 1/10 towards the curved beach which has a

constant radius centered on the breakwater tip. The
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wave basin was thus designed so that the shoreline

was everywhere approximately parallel with the dif-

fracted wave crests.
Fig. 3. Layout of Gourlay’s experiment.
Winer (1988) employed a numerical model to

simulate Gourlay’s laboratory experiment. He used

REF/DIF-1 (Kirby et al., 2002) as the wave driver

and used depth-averaged shallow water equations

which include radiation stress terms in the circulation

model. Because a Cartesian coordinate system was

adopted in the numerical model, a stair-type boundary

was employed at the curved beach. This boundary

effect was shown in the contour plots of both wave set-

up and velocity amplitude in his results.

We use the present curvilinear model to simulate the

experiment. A curvilinear grid shown in Fig. 4 is used

to fit the curved shoreline boundary. Rather than the

small computational domain Winer chose from the

shoreline to 3 m offshore of the breakwater, a larger

computational domain including the wave paddle area

is employed to provide enough reservoir to feed the

wave set-up, as in the laboratory experiment. The grid

sizes are about 0.1 m in the offshore region and the

exposed straight shoreline region and less than 0.1 m

around the curved beach.

REF/DIF-1 is used as the wave-driver in a subrou-

tine of the model code and provides the circulation

model with radiation stresses, short-wave-induced

volume flux, breaking wave energy dissipation, and
Fig. 4. Computational grid for simulation of Gourlay’s experiment.



Fig. 5. Wave set-up contours from Gourlay’s experiment (from Gourlay, 1974).
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wave bottom velocity. Because REF/DIF-1 is operat-

ing in a Cartesian grid, an interpolation is needed for

the data transfer from the Cartesian grid to the curvi-

linear grid (see Appendix D for detail). In REF/DIF-1,

the wet and dry grid technique proposed by Kirby and

Dalrymple (1986) is used for treating the dry grid

points as though they have a very small depth of water

(1 mm in the present paper). A wave height of 9.1 cm

with a wave period of 1.5 s is used in REF/DIF-1 as the

incident wave conditions, as in Winer’s simulation.

The bottom stress formulation (Svendsen et al.,

2000) with a constant bottom friction coefficient
Fig. 6. Wave set-up contours
fcw = 0.008 is adopted in the case. The turbulence

mixing coefficients in the eddy viscosity formulation

are chosen as the same values as in Svendsen et al.

(2000). The coefficients are also used in the following

laboratory experiment cases.

Figs. 5 and 6 show the experimental results for the

mean water surface contours and the corresponding

results obtained from the numerical model, respective-

ly. The comparison demonstrates that the numerical

results agree very well with the experiment results. In

contrast to Winer’s results, which failed to show any

set-up in the area of the connection of the shoreline and
from numerical results.



Fig. 7. Contours of current velocities and streamlines from Gourlay’s experiment (from Gourlay, 1974).
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the breakwater, the present model results show a wave

set-up in this region which is consistent with the

laboratory results.

To make model/data comparisons for the circula-

tion, we present Gourlay’s experimental results in Fig.

7. The figure illustrates both the contours for the

magnitude of the velocity and some streamlines indi-

cating the direction of the flow. The corresponding

results from the numerical model are shown in Fig. 8.

It can be seen from the comparison that the overall

agreement is fairly good. Both the magnitude and the

locations of the maximum currents obtained in the
Fig. 8. Contours of current velocities and ve
numerical model are similar to that in the laboratory

experiment. The shoreward oriented current in the area

directly exposed to the incident waves is very well

shown in the numerical results. The present model also

predicts the location of the primary eddy center and

current magnitude behind the breakwater as shown in

Fig. 8. However, the model fails to predict the stagna-

tion eddy in the corner behind the breakwater although

it does provide the set-up variation in that area as

shown in Fig. 6. The parabolic wave model is sus-

pected responsible to cause the discrepancy because it

is not appropriate model in predicting wave diffraction
locity vectors from numerical results.



Fig. 9. Computational grid for simulation of longshore circulation

around a conical island.
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in the sheltered region. Further studies using other

wave models may be needed to precisely simulate this

phenomena.

4.3. Longshore circulation around a Conical Island

Mei and Angelides (1977) conducted a semi-theo-

retical study of the averaged circulation caused by

waves breaking on the constant slope beach around a

circular island in a sea of constant depth. They used the
Fig. 10. Calculated
geometric refraction method and the energy conserva-

tion theory for wave calculations. For calculations of

circulation, they used very simple depth-and time-

averaged equations of motion that include pressure

gradient, radiation stress and bottom friction terms.

Polar coordinates were used in the circulation model.

They concluded that the wave refraction pattern deter-

mines the extent of longshore circulation. In particular,

for an island so large that there is a lee shore which is

not affected by the refracting waves, two current cells

are found on two sides of the island with respect to the

wave direction, without significant penetration in the

lee shore region. This conclusion was used to explain

the creation of two sand spits for abrasive island shores.

As a simple and efficient case for testing the

coordinate transformation within a circular domain,

the so-called ‘large island’ case is carried out in the

present paper as in Mei and Angelides (1977). The

radius of the island is 3048 m (10,000 ft). The water

depth of the flat seabed is 30.48 m (100 ft) and the

beach slope we adopted in the simulation is 1/40. The

incident wave height and wave period are, respective-

ly, 6 m and 10 s. REF/DIF-1 is again used for wave

calculation and the wet and dry grid technique is also

used to deal with the island geometry.

Fig. 9 shows the computational grid generated

according to the following formula:

xði; jÞ ¼ ½3048þ 15ði� 1Þ þ 0:865ði� 1Þ2�cosðjÞ

yði; jÞ¼½3048þ15ði� 1Þþ0:865ði� 1Þ2�sinðjÞ ð38Þ

where x(i, j) and y(i, j) are grid point coordinates at

(i,j); i= 1,2,. . .,52 and j = 1,2,. . .,361 (where the argu-
wave set-up.



Fig. 11. Vectors of volume flux calculated from the numerical model.
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ment of the sine and cosine is assumed to be degrees

in Eq. (38)). The figure shows a finer grid used in the

nearshore region to resolve the surf zone. The mini-

mum grid spacing is 15.8 m in the nearshore region

and the maximum is 60 m in the offshore region.
Fig. 12. Plan view
Notice that there are four boundaries in the computa-

tional domain, rather than two boundaries usually

used in the polar coordinates. Besides the island

boundary and the offshore boundary shown in Fig.

9, there are two lateral boundaries linked on the lee
of the LSTF.



Fig. 13. Computational grid.
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side along a island-normal coordinate line. Periodic

boundary conditions are used at the two lateral

boundaries.

Fig. 10 shows the mean surface elevation calcu-

lated from the circulation model. It is clear that a

wave set-up occurs at the front shore and a slight

wave set-down in the shoaling zone. The current

pattern can be demonstrated by the volume flux of

the calculated circulation shown in Fig. 11. There are

strong longshore currents along the front shore. The

currents turn back around the edges of the lee shore

and complete the two cells through the shoaling zone.

This result is consistent with the results of Mei and

Angelides (1977). The phenomenon was thus used to
Fig. 14. Depth-averaged c
explain the formation of spits protruding from the

island.

4.4. Longshore current simulation in an obliquely

quadrilateral domain

Recently, a longshore current experiment was

carried out in the Large-scale Sediment Transport

Facility (LSTF) at the U.S. Army Engineer Research

and Development Center’s Coastal and Hydraulics

Laboratory (Hamilton and Ebersole, 2001). The LSTF

has a concrete beach which has a longshore dimen-

sion of 31 m and a cross-shore dimension of 21 m,

with a plane slope of 1:30. To reproduce a longshore
urrent velocity field.
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uniform current in the finite-length wave basin, 20

independent pumps and channels are used to control

the cross-shore distribution of the mean longshore

current. To minimize wave diffraction into the flow

channels, two obliquely oriented waveguides oriented

10j from the shoreline-normal direction were set on

lateral boundaries. Fig. 12 shows a plan view of the

LSTF and locations of waveguides and measurement

transects (dashed lines). In the figure, Qp is the total
Fig. 15. Longhore current comparisons at the measurement trans
longshore flow rate actively pumped through the

external recirculation system. If the wave-induced

longshore current does not match Qp, an internal

recirculation Qr will develop as shown in the figure.

The Qs is the total longshore flow rate between the

wave set-up limit and the point of transition where the

mean longshore current reverses direction. In the

physical experiment, the discharge from the pumps

was adjusted to minimize the internal recirculation Qr.
ects (circles: measurement, solid lines: numerical results).
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This technique was previously used by Visser (1980,

1984, 1991).

For the simulation of a perfect longshore uniform

current without internal recirculation Qr, the Cartesian

version of SHORECIRC may be a proper model for

longshore current simulations because there is no

boundary effect caused by the oblique waveguides.

For a more general case, however, the internal recir-

culation exists and the boundary effect of oblique

waveguides shows up near the lateral boundaries. A
Fig. 16. Mean water level comparisons at the measurement trans
boundary-fitted grid model is more appropriate for this

case than a rectangular grid model. A boundary-fitted

grid is generated as shown in Fig. 13. The grid sizes

are 0.5 m in longshore direction and 0.26 m along the

waveguide direction (0.25 m between two adjacent

longshore-direction grid lines).

Again we use REF/DIF-1 as the wave-driver in a

subroutine of the curvilinear SHORECIRC model. As

a specified volume flux boundary condition, the mea-

sured flux at the lateral boundaries is employed by
ects (circles: measurement, solid lines: numerical results).
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interpolating the data into the model boundary points.

The offshore boundary and shoreline boundary are

vertical walls in this case. A regular wave case was

simulated from the physical experiment with a wave

period of 2.5 s, 0.182 m incident wave height and 10-

degree wave angle. The water depth decreases linearly

from 0.667 m at the offshore boundary to 0.002 m at

the shoreline boundary. The time step used in this case
Fig. 17. Comparison of the vertical profile of cross-shore current a
is 0.05 s. Wave–current interaction is taken into

account in the model by calling the wave-driver

subroutine every 10 s. The model reached steady state

after 200 s.

Fig. 14 shows the calculated depth-averaged cur-

rent field. It shows that the steady state longshore

current appears approximately longshore uniform. The

peak currents are around x = 12–15 m in the surfzone
t Y27 (circles: measurement, solid lines: numerical results).



Fig. 18. Bathymetry of Grays Harbor (depths below mean tide level

in meters).

Fig. 19. Computational grid for the Grays Harbor case (Maximum

grid size is 296.4 m and minimum is 59.1 m).
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while the breaking line is around x = 9 m in both the

physical experiment and the REF/DIF-1 results. There

is a very weak internal recirculation outside the surf-

zone, found in the numerical results and confirmed by

the experimental data.

The longshore current comparisons are made be-

tween the numerical results and experiment measure-

ments at eight measurement transects shown by dashed

lines in Fig. 12. Fig. 15 shows the comparisons, where

y= 5.7, 9.7, 13.7, 17.7, 21.7, 25.7, 29.7 and 30.7 m in

the figure are the model coordinates and represent the

locations of the corresponding measurement transects

Y39, Y35, Y31, Y27, Y23, Y19, Y15, and Y14,

respectively, shown in Fig. 12. As shown in Fig. 15,

the current amplitudes and the locations of peak

currents are well predicted. Some apparent disagree-

ments are found in the downstream transects of

y = 29.7 and 30.7 m, where the measured current data
show a different cross-shore variation around x = 12 m.

This particular feature is not resolved by the model

predictions. Also, an under-prediction of the currents is

found near the shoreline region in the same two trans-

ects. In Fig. 16, we compare the measured mean water

levels and the numerical results. The figure shows that

very good agreement is obtained from the comparisons

of wave set-up and set-down.

The LSTF measurements also provide information

about the vertical variation of the currents. As de-
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scribed in the model theory, the quasi-3D circulation

model is able to predict the vertical profile of wave-

induced current. Using Eq. (27), we can easily calculate

the vertical distributions of cross-shore and alongshore

velocity. Fig. 17 shows the model/data comparisons of

cross-shore velocities at measurement points in transect

Y27. It is shown that most of the numerical results

agree well with the measurement data except the results

at x = 10.9 m where significant deviations occur. As

shown by Svendsen and Putrevu (1994) the vertical

variations of the current are instrumental in providing

the current lateral mixing.

4.5. Simulation of nearshore circulation at Grays

Harbor

Grays Harbor is a jettied entrance on theWashington

coast, located approximately 30 km north of Willapa
Fig. 20. Snapshot of calculated wave-induced
Bay. We choose Grays Harbor as the computational

domain in the case study of the curvilinear version of

SHORECIRC because it includes irregular coast lines,

jetties, and complicated geometry. The case illustrates

the versatility of the curvilinear model to deal with

complicated geometries.

Fig. 18 shows the bathymetry of Grays Harbor.

There are two jetties located on the south and north

side of the harbor entrance. The south jetty is approx-

imately 1700 m long and the north jetty is about 500 m

long, measured from the shoreline. The ebb shoal is

offset to the north and is of low relief. The measured

bathymetry does not include the water depths less than

4 m (mean tide level). Therefore the bathymetry shown

in Fig. 18 is a modified version of the measured

bathymetry where we extend the beach about 300 m

to the shoreline using a typical beach slope of 1/80 in

this region.
currents (H= 3.5 m, h= 7.5, T= 12 s).
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A curvilinear grid is generated using Brackbill and

Saltzman’s method (1982) and is shown in Fig. 19. To

resolve complex nearshore bathymetry, coastlines and

structures, finer resolution is used near the coastlines,

jetties, and the inlet. The grid dimension is 140	 121.

The minimum grid size is 65 m near the shoreline on

right side of the north jetty and maximum grid size in

the offshore is about 300 m.

Several test cases are carried out using different

wave conditions chosen according to the average

annual storm conditions and the typical storm condi-

tions for the site. Here we show a typical storm case

with a wave height of 3.5 m and a peak wave period of

12 s. We use a monochromatic wave in REF/DIF-1 for

this case. The wave direction is west-southwest,

corresponding to 7.5j in the x–y coordinates of the

model.
Fig. 21. Cross-shore distributions of wave height (a), longshore

current (b), and water depth (c), along y= 6561 m.
Fig. 20 shows a snapshot of the nearshore circula-

tion calculated from the model. Strong longshore

currents develop in the surfzone. The current patterns

around the two jetties are complex with vortices near

the tips of the jetties. The zoom-in figure shows the

complex patterns of the current near the south jetty. It

should be noted that there is a broad current flowing

southward near the tip of the south jetty and the cause of

the flow needs to be further investigated. In the region

south of the south jetty, there are two peaks of long-

shore currents caused by the barred beach. Fig. 21

shows a water depth profile along y = 6561 m and

corresponding cross-shore distributions of wave height

and longshore current. The current magnitude is about

1m/swhich is a reasonable magnitude of wave-induced

currents under this wave condition (Gelfenbaum et al.,

2000).

Though the numerical results have not been com-

pared with measurements because of an absence of

measurement data at this moment, this case study

illustrates that the curvilinear version of SHORECIRC

has a potential for computations in complicated

domains. A further study of the Grays Harbor case

is being carried out with considerations of wave-

driven current, tidal currents and model/data compar-

isons and will be reported in the near future.
5. Conclusion

Using a generalized coordinate transformation and

contravariant technique, curvilinear equations of the

quasi-3D nearshore circulation model are derived in

this paper based on the work of PS99. The curvilin-

ear model is implemented by employing a high-order

finite difference scheme and using a staggered grid

in the transformed image domain. To make the

model applicable to irregular shaped domains such

as harbors and tidal inlets, various point types are

defined in the model to recognize various boundary

conditions.

The numerical convergence is tested, and very

good convergence rates with both space and time

discretization are obtained. The model is then used in

four case studies. In the first case, a boundary-fitted

curvilinear grid is used in the simulation of nearshore

circulations generated on a curved beach by the

diffracted waves in the lee of a breakwater. The
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numerical results show very good agreement with

experimental results by Gourlay (1974). The second

case shows the simulation of longshore circulation

around a conical island. Circulation cells are found on

the sides of the island, which is consistent with Mei

and Angelides (1977). The third case, longshore

current simulation in an obliquely quadrilateral do-

main, uses a non-orthogonal Cartesian grid to fit

obliquely oriented wave guides used in the LSTF

laboratory experiment by Hamilton and Ebersole

(2001). The model/data comparisons of the longshore

current, wave set-up, as well as vertical profile of

cross-shore current show the accuracy of the curvi-

linear model. The simulation of nearshore circulation

at Grays Harbor, as the last case, illustrates the

capability of the model in dealing with irregular

geometries in complicated domains. For this case

no measured data is available. Compared to the

Cartesian version of the nearshore circulation model

which is only used in rectangular domains, the

present curvilinear version with the successful test

cases shows its versatility to handle complicated

geometries.

Further work with a moving shoreline boundary

condition (Brocchini et al., 2002) and an absorbing-

generating boundary condition (Van Dongeren and

Svendsen, 1997) may be needed to deal with moving

shoreline problems and non-reflecting seaward bound-

ary problems. More practical applications of the cur-

vilinear model, such as the Grays Harbor case, need to

be investigated with field data verification. As one of

the circulation components in the nearshore commu-

nity model, the source code of the curvilinear version

of the Quasi-3D nearshore circulation model will be

available on line at http://www.coastal.udel.edu/kirby/

NOPP/index.html.
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Appendix A. Derivations of equations

A.1. Derivations of Eq. (6)

The variables defined in Eq. (5) can be expressed

using the new basis (a1, a2, k):

u ¼ uaaa þ wk; V ¼ V aaa þWk;

Ṽ ¼ Ṽ aaa; V1 ¼ V a
1 aa; ð39Þ

uw ¼ ua
waa þ wwk; uV¼ uVaaa þ wVk: ð40Þ

where w, ww and wV are vertical components of in-

stantaneous velocity, short-wave velocity and turbu-

lence velocity, respectively. Va= Ṽa +V1
a and W is the

vertical component of the time averaged velocity.

The depth-integrated, short-wave-averaged conti-

nuity equation may be written in a general form as

Bf̄
Bt

þ divHṼ ¼ 0 ð41Þ

where divH means horizontal divergence. According

to tensor calculus, Eq. (41) can also be expressed in a

tensor-invariant form:

Bf̄
Bt

þ ðṼ ahÞ;a ¼ 0 ð42Þ

where ()a is the covariant derivative of a first-order

tensor. For an arbitrary vector uaaa, for instance, its

covariant derivative is defined as

ub
;a ¼

Bub

Bna
þ udCb

ad ð43Þ

Using the following expression of Cay
b

Cb
ad ¼

B
2xl

BnaBnd

Bnb

Bxl
ð44Þ

Eq. (42) can be written in the form of Eq. (6).

 http:\\www.coastal.udel.edu\kirby\NOPP\index.html 
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A.2. Derivations of Eq. (9)

The depth-integrated, short-wave-averaged mo-

mentum equation is written in the generalized form as

B

Bt
ðṼ hÞ þ divH

" 
Ṽ aṼ bhþ

Z f

�h0

V a
1V

b
1 dz

þ
Z f

ft
ðua

wV
b
1 þ V a

1 u
b
wÞdz

!
aaab

#
þ 1

q
divHT

þ 1

q
divHSþ ghgradf � 1

q
H s þ

1

q
HB ¼ 0 ð45Þ

In Eq. (45), S and T represent the radiation stress

and the Reynolds’ stress, respectively. After the fol-

lowing approximation made in PS99

Z f

�h0

V a
1V

b
1 dzþ

Z f

ft
ðua

wV
b
1 þ V a

1 u
b
wÞdzc

Z f̄

�h0

V a
1V

b
1 dz

þ V
b
1 ðf̄ÞQa

w þ V a
1 ðf̄ÞQb

w; ð46Þ

the simplified form of the momentum equation (PS99,

Eq. (9)) is written in a tensor-invariant form as

B

Bt
ðṼ ahÞ þ

 
Ṽ aṼ bhþ

Z f̄

�h0

V a
1V

b
1 dzþ Qa

wV
b
1 ðf̄Þ

þ V a
1 ðf̄ÞQb

w

!
;b

þ 1

q
T

ab
;b þ 1

q
S

ab
;b þ gh

Bf
Bnb

gba

� 1

q
H a
s þ

1

q
H a
B ¼ 0 ð47Þ

In Eq. (47), Sab is the contravariant component of

radiation stress which is a second-order tensor.

According to the relationship between two different

bases, the relationship between Sab and Sab can be

easily obtained as:

S11¼ 1

g0
S11

Bx2

Bn2

� 2

�2S12
Bx2

Bn2

Bx1

Bn2
þS22

Bx1

Bn2

� 2
 !

ð48Þ

F. Shi et al. / Coastal E120
S12 ¼ S21 ¼ 1

g0

�
� S11

Bx2

Bn1

Bx2

Bn2

þ S12
Bx1

Bn1

Bx2

Bn2
þ Bx2

Bn1

Bx1

Bn2

� 
� S22

Bx1

Bn1

Bx1

Bn2



ð49Þ

S22 ¼ 1

g0
S11

Bx2

Bn1

� 2

�2S12
Bx1

Bn1

Bx2

Bn1
þS22

Bx1

Bn1

� 2
 !

ð50Þ

Usually Sab is computed from a wave model and Sab

is then obtained using Eqs. (48)–(50). Another way to

get the term S,b
ab is to calculate the contravariant

component of div S from its Cartesian components

which is directly obtained from a wave model in

Cartesian coordinates.

The term T,b
ab in Eq. (47) is the contravariant

component of Reynolds’ stress which is also a sec-

ond-order tensor. It can be calculated using the rate-

of-strain tensor defined by

D ¼ 1

2
½gradṼ þ ðgradṼ ÞT �; ð51Þ

and

divT ¼ divðhvtDÞ; ð52Þ

where ()T represents the transpose of a tensor, mt is the
diffusion coefficient. Using tensor calculus, divT or

T,b
ab is expressed as

T
ab
;b ¼ 1ffiffiffiffiffi

g0
p

B
ffiffiffiffiffi
g0

p
mhDab

Bnb
þ mhDcbCa

cb ð53Þ

where

Dab ¼ 1

2
ðgcbua

;c þ gcaub
;cÞ ð54Þ

A.3. Derivation of Eq. (12)

The general form of the horizontal momentum

equation PS99 Eq. (10) reads

BuH

Bt
þ ðdivHðuuÞÞH ¼ � 1

q
ðgradpÞH ð55Þ
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where u = uH +w, ()H means a horizontal component.

(div (uu))H can be divided into two parts below.

ðdivðuuÞÞH¼divH �ðuHuH Þ þ ðuawÞ;zaa ð56Þ

where a = 1,2. Extending (uaw),z and using the tensor

calculus

ðuawÞ;z ¼
Buaw

Bz
þ Ca

b3u
bwþ C3

b3u
aub ¼ Buaw

Bz

ð57Þ

The derivation above used the following values of

second kind Christoffel symbols

� a
b3 ¼ � 3

b3 ¼ 0 ð58Þ

Then (56) can be written as

ðdivðuuÞÞH¼divHðuHuH Þþ
Buaw

Bz
aa ð59Þ

Using Eq. (59), Eq. (55) may be expressed in the

tensor-invariant form as shown in Eq. (12)

A.4. Derivation of Eq. (14)

According to Eq. (59), the terms involving uV in
Eq. (13) can be written in the general tensor form:

ðuVauVbÞ;baa þ
B

Bz
ðuVawVÞaa ¼ ðdivðuVuVÞÞH ð60Þ

Reynolds stresses may be expressed by introducing

the rate-of-strain tensor

uVuV¼ �vt½gradV þ ðgradVÞT �: ð61Þ

Eq. (61) may be written in a tensor-invariant form

as

uVuV¼ �vtðgcbV a
;c þ gcaV b

;cÞaaab

� vt gca BW

Bnc
þ BV a

Bz

� 
kaa

� vt
BV a

Bz
þ gca BW

Bnc

� 
aak ð62Þ
where (a, b, c) = 1,2. The above derivation used the

values of contravariant metric:

g3a ¼ ga3 ¼ 0

g33 ¼ 1 ð63Þ

and Christoffel symbols (Eq. (58)).

Substitution of Eq. (62) into Eq. (60) leads to the

representation of (div :

ðdivðuVuVÞÞH ¼ ½�vtðgcbV a
;c þ gcaV b

;cÞ�;baa

� B

Bz
vt

BV a

Bz
þ gba BW

Bnb

� � �
aa ð64Þ

Substituting Eq. (64) into Eq. (13) gives the tensor-

invariant form (Eq. (14)).

ðuVuVÞÞH
Appendix B. Dispersive mixing coefficients

Using Eq. (27) and the expressions of A, B, D and

M in PS99, we get

Dab ¼ 1

vt

�
1

63
d1ad1bh

6 þ 1

36
ðd1ae1b þ d1be1aÞh5

þ
�

1

15
d1aðf1b þ f2bÞ þ

1

15
d1bðf1a þ f2aÞ

þ 1

20
e1ae1b


h4 þ 1

8
ðe1aðf1b þ f2bÞ

þ e1bðf1a þ f2aÞÞh3 þ
1

3
ðf1aþ f2aÞðf1bþ f2bÞh2

�

ð65Þ

Bab ¼� 1

vt

�
4

63
d1bd1ah

6þ
�

1

12
d1ae1bþ

1

12
e1ad1b


h5

þ
�

2

15
d1aðf1b þ f2bÞ þ

2

15
d1bðf1a þ f2aÞ

þ 1

10
e1ae1b


h4 þ

�
1

8
e1aðf1b þ f2bÞ

þ 1

8
e1bðf1a þ f2aÞ


h3
�

ð66Þ



ad

Fig. 22. Staggered grid in n1–n2 plane (	f̄point,o– Ṽ1 and5– Ṽ 2).

F. Shi et al. / Coastal Engineering 49 (2003) 99–124122
Mab ¼ 1

5
d1ad1bh

5 þ 1

4
ðd1ae1b þ d1be1aÞh4

þ 1

3
ðd1aðf1b þ f2bÞ þ d1bðf1a þ f2aÞ

þ e1ae2bÞh3 þ
1

2
ðe1aðf1b þ f2bÞ

þ e1bðf1a þ f2aÞÞh2 þ ðf1a þ f2aÞðf1b þ f2bÞh
þðQwad1bþQwbd1aÞh2þðQwae1bþQwbe1aÞh
þ Qwaðf1b þ f2bÞ þ Qwbðf1a þ f2aÞ ð67Þ

Aabd ¼ � 1

vt

(
1

63

Y1
ad

d1b

 !
h7 þ 1

36

�Y1
ad

e1b

þ
Y2
ad

�2h;dd1a

 !
d1b

�
h6 þ

�
1

15

Y1
ad

ðf1b þ f2bÞ

þ 1

20

Y2
ad

�2h;dd1a

 !
e1bþ

1

15
d1b

Y3
ad

�h;de1a

 !�
h5

þ 1

8

� Y2
ad

�2h;dd1a

 !
ðf1b þ f2bÞ

þ
Y3
ad

�h;de1a

 !
e1b

�
h4 þ 1

3

Y3
ad

�h;de1a

 !

	 ðf1b þ f2bÞh3 þ
1

63

Y1
bd

d1a

 !
h7

þ 1

36

Y1
bd

e1a þ
Y2
bd

�2h;dd1b

 !
d1a

" #
h6

þ
�
1

15

Y1
bd

ðf1a þ f2aÞ þ
1

20

Y2
bd

�2h;dd1b

 !
e1a

þ 1

15
d1a

Y3
bd

�h;de1b

 !�
h5þ 1

8

� Y2
bd

�2h;dd1b

 !

	 ðf1a þ f2aÞ þ
Y3
bd

�h;de1b

 !
e1a

�
h4

þ 1

3

Y3
bd

�h;de1b

 !
ðf1a þ f2aÞh3

)
ð68Þ

where
Q1

ad;
Q2

ad and
Q3

ad are defined by

Y1
ad

¼ d1a;d þ � a
kdd1k ð69Þ
Y2
ad

¼ e1a;d þ � a
kde1k ð70Þ

Y3
¼ ðf1a þ f2aÞ;d þ � a

kdðf1k þ f2kÞ ð71Þ
Appendix C. Staggered grid arrangement and

numerical scheme

A staggered grid in n1� n2 plane is employed as

shown in Fig. 22, where the crosses denote f¯-points at
which f̄ is computed, the circles denote Ṽ1-points at

which Ṽ1 is computed and the squares denote Ṽ2-

points at which Ṽ2 is computed.

The first-order spatial derivative terms are discre-

tized to fourth-order accuracy using five-point finite-

defferencing. For example, fn1 may be discretized at

point j as

fn1 ¼ ðfj�2 � 27fj�1 þ 27fj � fjþ1Þ=ð24Dn1Þ þ Oðdn41Þ
ð72Þ

The fourth-order Adams–Bashforth–Moulton pre-

dictor–corrector scheme is employed to perform time

updating. A sequence of time instants are defined by

t = p Dt. Level p refers to information at the present,

known time level. For the time-derivative equation

written by

Bf

Bt
¼ E ð73Þ
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the predictor step is the third-order explicit Adams–

Bashforth scheme, given by

f
pþ1
i; j ¼ f

p
i; jþ

Dt

12
½23ðEÞpi; j�16ðEÞp�1i; j þ5ðEÞp�2

i; j � ð74Þ

After predictor step we use the fourth-order Adams–

Moulton corrector method:

f
pþ1
i; j ¼ f

p
i; j þ

Dt

24
½9ðEÞpþ1

i; j þ 19ðEÞpi; j � 5ðEÞp�1
i; j

þ ðEÞp�2
i; j � ð75Þ
Fig. 23. Interpolation triangle.
Appendix D. Interpolation/extrapolation between

model grids

Interpolation or extrapolation is usually employed

between the curvilinear grid used for the circulation

model and the rectangular grid used for wave models.

The linear interpolation/extrapolation method is

used in the present paper. We assume two grid systems,

grid-1 and grid-2, which can be curvilinear grids or

rectangular grids. As shown in Fig. 23, the interpola-

tion value at point A in grid-1 is evaluated by the

values at three points, 1, 2 and 3, of a triangle in grid-2

which surrounds point A. For extrapolation, point A is

out of the triangle. Four triangle areas Sabc, i.e., S123,

S12A, S31A and S23A are calculated using the following

formula:

Sabc ¼

xa ya 1

xb yb 1

xc yc 1

����������

����������
ð76Þ

where (xa, ya) represents coordinates of point 1, 2, 3

and A. For interpolation, (a, b, c) are anti-clockwise for
all the four triangles and thus Sabc are positive. For

extrapolation, clockwise (a, b, c) results in negative

Sabc. The following formula is used for both interpo-

lation and extrapolation:

FA ¼ ðF1S23A þ F2S31A þ F3S12AÞ=S123 ð77Þ

where F1, F2, F3 and FA represent any converted

variables at point 1, 2, 3 and A, respectively.
It should be mentioned that the extrapolation is

usually used at domain boundaries and is only suitable

for the case that domain boundaries are close to each

other. For the cases that two domain boundaries are

not close to each other, e.g., Gourlay’s experiment and

conical island case, we make the interpolation in the

overlapped region of the two grids. To save compu-

tational time for interpolation/extrapolation, Sabg are

stored when the interpolation/extrapolation subroutine

is first called.
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